
8 The Delphi Magazine Issue 29

Beating the System: Exploring
Delphi’s Closed-Tools API
IDE integration for Rocket Scientists!
by Dave Jewell

This month’s Beating The
System is affectionately dedi-

cated to Danny Thorpe, Borland
development engineer and author
of the excellent Delphi Component
Design published by Addison-
Wesley. In the introduction to his
book, Danny expresses the wish
that there might be more advanced
Delphi books around with names
such as Delphi for Rocket Scientists,
Delphi for DemiGods and so forth.
Not having access to the source
code, I wouldn’t claim to have any-
thing like the Delphi knowledge
that Danny possesses, but never-
theless I hope there might be one
or two rocket scientists out there
who find this interesting!

The subject of this month’s
column is primarily of interest to
those who are developing wizards
and other add-ins which integrate
into the Delphi 3.0 IDE. If you’ve
done much work with the Open
Tools API, you may occasionally
have been frustrated that some
much-needed functionality wasn’t
there, or that you could only
achieve some effect in a very round
about way. What I want to discuss
here is perhaps one of the best
kept secrets of Delphi program-
ming, the mysterious LibIntf unit.
Using LibIntf, you get immediate
access to a whole bunch of new
routines that aren’t directly avail-
able through the documented
Open Tools API. In a real sense,
LibIntf represents the Closed
Tools API!

The History Of LibIntf
As the name suggests, LibIntf is
primarily related to the compo-
nent library, but it also contains
quite a number of other, IDE-
related goodies. In essence,
LibIntf is the interface between
the IDE and the component library.

Back in the days of Delphi 1.0 and
Delphi 2.0, the component library
existed as a single, huge DLL which
had to be rebuilt each time that one
or more components were added
to the library. Not only was this
slow, but it was also not particu-
larly reliable. When Borland
advised you to make a backup
copy of the component library
before adding new components,
they meant it!

What you might not appreciate
is that the old COMPLIB.DCL
library contained a lot more than
just components. It also contained
a number of other undocumented
units, the main one being a large
unit called LibMain. Together, they
implemented much of the design-
time ‘on-form’ behaviour of com-
ponents, including things like grid
painting and snapping to grids,
grab handles and so forth, along
with Delphi’s various built-in prop-
erty editors. The IDE communi-
cated with the library by passing it

a pointer to an object of type
TILibAppBuilder. This object was
derived from TInterface (so that
its various methods could be
called across a DLL boundary) and
provided all the necessary meth-
ods for the library to pull the IDE’s
strings, so to speak. Similarly,
when the IDE first initialised the
library DLL, it received back a
pointer to an object of type TILi-
brarywhich in turn allowed the IDE
to directly access and manipulate
the contents of the library. Thus,
the library and the IDE were part-
ners in an elaborate, symbiotic
relationship where each partner
had access to the other’s closely
guarded secrets...

With the arrival of Delphi 3.0,
much of this ‘you show me yours,
and I’ll show you mine’ behaviour
became unnecessary. The compo-
nent library now exists only as a
number of packages and each of
these packages contains very little
besides the components and VCL

➤ Figure 1:
There’s more in the
VCL30.DPL package
than meets the eye.
Using the Merlin
executable file
viewer, you can see
our quarry hiding
amongst the
undergrowth...

10 The Delphi Magazine Issue 29

library routines you’d expect to
find in there. All the ‘real’ IDE code
is now located firmly inside the IDE
which, of course, is where it ought
to be.

Does this mean that these secret
back-doors into Delphi no longer
exist? Funnily enough, no. The
TILibrary and TILibAppBuilder
interfaces are still very much alive,
except that the latter has now been
externally renamed to TIDelphiIDE,
which better reflects its purpose.

The Source, The Whole
Source And Nothing But...
So you think you’ve got all the VCL
source code? If you use something
like Merlin’s Executable Viewer
tool to peek inside the VCL30.DPL
package, you’ll find that it contains
a few units which aren’t available
in source code form. This includes
LibHelp, TLHelp32 and Proxies, but
the one we’re interested in is
LibIntf. It’s this unit which con-
tains the declarations for TILibrary
and TILibAppBuilder. Interestingly,
even if you search the ‘undoc-
umented Delphi’ books, such as
those by Ray Lischner and the
aforementioned book by Danny
Thorpe, you’ll find no mention of
LibIntf...

If LibIntf is contained in the
VCL30 package, then surely all we
have to do is figure out how to call

the various methods it contains?
Again, no. LibIntf is just a set of
declarations for abstract classes,
ie classes which contain one or
more virtual abstract methods. In
other words, there’s no real code
in there. LibIntf is just a template
which defines a number of inter-
faces, it doesn’t contain the code
necessary to implement those
interfaces. If you’ve used units
such as DsgnIntf, EditIntf,
ExptIntf etc you’ll be familiar with
this approach. All these units con-
tain only the interface declara-
tions: the code is inside the IDE
itself.

So how can we use LibIntf if we
haven’t got the declarations? More
to the point, what does LibIntf do
for us? Ok, enough teasing! If you
take a look at Listing 1, you’ll see a
partial listing of the contents of the
LibIntf unit. This contains the dec-
laration for the TIDelphiIDE inter-
face, along with a few other
assorted bits and pieces. Let me
stress right away that this code
won’t compile. Not only that, but
you shouldn’t even try to compile
it! I’m showing you this code in
order that you, the programmer,
know what methods are in the
TIDelphiIDE object and what
parameters they take. This code is
for your benefit not that of the
compiler.

Somewhat counter intuitively,
we don’t need to supply any source
code for LibIntf, nor do we need to
pull apart the code inside the IDE,
even though we don’t have a DCU
file containing the real code. Pro-
vided that we know what the inter-
face looks like, we can go ahead
and use it in our own experts. All
we need to do is add LibIntf to our
uses clause and off we go!

Let me stress that this will only
work in an expert. If you add
LibIntf to the uses clause of an
ordinary application (it wouldn’t
make sense to do this anyway, for
obvious reasons) the compiler will
complain that it can’t find the
LibIntf unit. There is obviously
some sleight of hand operating
behind the scenes when the com-
piler is in ‘expert-writing mode.’

If you look at Listing 1 again,
you’ll see that there’s a variable,
DelphiIDE, which is initialised to
zero. As with the declaration of the
ToolServices object in the ExptIntf
unit, we can rely on this object
having been initialised to point to a
real TIDelphiIDE object by the time
our expert gets a look in.

In the remainder of this article,
I’m going to discuss some of the
DelphiIDE methods, relating them
to the operation of a small LibIntf

➤ Listing 1

unit LibIntf;
interface
uses
Windows, Classes, Graphics, ToolIntf, ExptIntf,
FileIntf, VirtIntf;

type
TDesignDialog = (ddAlign, ddSize, ddScale, ddTabOrder,
ddCreationOrder, ddSaveTemplate);

TDesignerOptions = record
DisplayGrid: Boolean;
SnapToGrid: Boolean;
GridSizeX: Integer;
GridSizeY: Integer;
ShowComponentCaptions: Boolean;

end;
TIPaletteItem = class (TInterface)
public
function CreateComponent (Owner, Parent: TComponent;
Module: TIModule):TComponent; virtual; abstract;

procedure Paint (Canvas: TCanvas; X, Y: Integer);
virtual; abstract;

end;
TIDelphiIDE = class (TInterface)
public
procedure ActiveFormModified; virtual; abstract;
procedure ComponentRenamed (const CurName, NewName:
String); virtual; abstract;

procedure ExecDesignDialog (DesignDialog:
TDesignDialog); virtual; abstract;

procedure FormActivated; virtual; abstract;
function GetAppHandle: hWnd; virtual; abstract;
function GetPathAndBaseExeName: String;
virtual; abstract;

function GetBaseRegKey: String; virtual; abstract;
function GetToolSelected: Boolean; virtual; abstract;
function GetCurCompClass: TIPaletteItem;
virtual; abstract;

function GetPaletteItem (ComponentClass:

TComponentClass): TIPaletteItem; virtual; abstract;
function GetCurTime: Integer; virtual; abstract;
procedure GetDesignerOptions (var Options:
TDesignerOptions); virtual; abstract;

function GetMainWindowSize: TRect; virtual; abstract;
function LockState: Boolean; virtual; abstract;
procedure ModalEdit (EditKey: Char; ReturnWindow:
Pointer); virtual; abstract;

procedure OpenForm (const FormName: String; Show:
Boolean); virtual; abstract;

procedure RaiseException (const Message: String);
virtual; abstract;

procedure ResetCompClass; virtual; abstract;
procedure SelectionChanged; virtual; abstract;
procedure ShowClassHelp (const ClassName: String);
virtual; abstract;

procedure SelectItemName (const Name: String);
virtual; abstract;

procedure ValidateActiveModule; virtual; abstract;
procedure AddExpert (Expert: TIExpert);
virtual; abstract;

procedure RemoveExpert (Expert: TIExpert);
virtual; abstract;

function GetToolServices: TIToolServices;
virtual; abstract;

procedure ExpertsLoaded; virtual; abstract;
function GetFileSystem (const Ident: String):
TIVirtualFileSystem; virtual; abstract;

function MakeBackupFileName (const FileName: String):
String; virtual; abstract;

function CreateBackupFile: Boolean; virtual; abstract;
function WinHelp (const HelpFile: String;
Command, Data: Integer): Boolean; virtual; abstract;

end;
const
DelphiIDE: TIDelphiIDE = nil;

implementation
end.

12 The Delphi Magazine Issue 29

Sample Expert which I’ve written.
The code for this expert is shown
in Listing 2. There’s also a registra-
tion file and a unit which imple-
ments the usual TIExpert interface:
you’ll find a complete set of files on
the disk. You can see the expert
running in the various screenshots
that accompany this article. The
expert doesn’t actually do any-
thing, it merely serves as a vehicle
for testing the individual methods
of the TIDelphiIDE class.

Miscellaneous
Information Routines
Firstly, take a look at Figure 2. This
page of the LibIntf expert returns
miscellaneous information relating
to the state of the Delphi 3.0 IDE.
Let me stress that I’ve written the
user interface of this expert in such
a way that it rather gives the
impression that you can use it to
change internal IDE variables, but
this definitely isn’t the case! You
can edit edit boxes, check check
boxes and push radio buttons to
your hearts content, but the infor-
mation being presented by the
expert is read-only.

In Figure 2 you’ll see that the first
item (top left corner) is the base
registry key used by the Delphi 3.0
IDE to keep track of configuration
information. This registry key is
relative to the HKEY_CURRENT_USER
registry tree. The information is
returned by referencing the Get-
BaseRegKeymethod of the DelphiIDE
variable. This information is obvi-
ously useful if you’re writing your
own expert and you want to store
your own configuration as a part of
the Delphi 3.0 registry tree.

You should bear in mind that
some of the DelphiIDE methods
discussed here have equivalent
functionality to the official, docu-
mented methods. For example, the
GetBaseRegKey method corre-
sponds directly to the TIToolServ-
ices.GetBaseRegistryKey method.
As you might imagine, the relation-
ship between these different inter-
faces is fairly incestuous and it’s
sometimes difficult to know which
is the organ-grinder and which is
the monkey!

The next method is GetPathAnd-
BaseExeName. As the name suggests,

this returns the full pathname of
the installed IDE executable,
though without the terminating
.EXE. Again, this might be useful if
you wanted to store your own
information in a subdirectory
hanging off the main Delphi direc-
tory tree. Next, we come to GetApp-
Handle. This method actually maps
down onto a call to Applica-
tion.Handle within the IDE and
therefore returns a window
handle. Bear in mind that this is not
the window handle of the main IDE
window, it’s the window handle of
the hidden API-level window that’s
a characteristic of all Delphi appli-
cations, including the IDE itself.

In Figure 2 you can also see a Lock
State checkbox. The on/off state of
this checkbox is determined by the
return value of the LockState
method. If you look on the Edit
menu of the Delphi IDE, you’ll see a
menu item entitled Lock Controls.
This IDE option is used to lock the
size and position of controls in the
form designer while allowing you
to edit properties via the Object
Inspector in the usual way, thus
guarding against inadvertent
‘finger-trouble’! If controls are cur-
rently locked, then LockState
returns True, otherwise False. It’s
worth noting that internally the
LockStatemethod works by merely
returning the Checked property
from the aforementioned Lock Con-
trolsmenu item! This elegant tech-
nique eliminates the need for the
IDE to maintain a separate Boolean

variable for the lock state, and
removes the necessity of keeping
the menu item synchronised with a
Boolean variable: effectively the
menu item is the variable.

Moving on, the GetCurTime func-
tion returns the current time and
date, as reported by an internal
routine within the IDE. I believe
that this information is made avail-
able to interested experts and
add-ons in order that they can per-
form comparisons of file date/time
modifications. For example, if you
look at the ISTREAMS.PAS file (part
of the Open Tools API) you’ll find
reference to methods with names
such as SetModifyTime and GetModi-
fyTime. If an expert needs to know
the date/time, it’s reasonable to
ask why it doesn’t just call the Now
function in SYSUTILS? However, the
GetCurTime routine returns date/
time information in DOS format,
rather than the TDateTime format.
Thus, if you want to use the deeply
cool FormatDateTime function to
express ‘IDE time’ in human-
readable format, you’ll have to do
something like this:

Str := FormatDateTime(‘dddd,
mmmm d, yyyy, hh:mm AM/PM’,
FileDateToDateTime(
GetCurTime));

Finally, the GetMainWindowSize
method returns a TRect which cor-
responds to the size and location
of the main Delphi IDE window in
screen co-ordinates (pixels).

➤ Figure 2: This is the Miscellaneous page of my LibIntf ‘exerciser’
expert. Amongst other things, LibIntf returns the current date/time,
size and position of the main Delphi window and the base registry
key used to store IDE configuration info.

January 1998 The Delphi Magazine 13

Unlike the GetAppHandle call, this
really is the visible, main IDE
window which contains the
component palette and speed-bar.
In Figure 2, you will notice that the
window has an initial width of 1024
because I’m using a 1024 by 768
resolution display: at initialisation
time, the IDE sets up this window
to exactly fit the width of the
screen.

Form Designer Information
You’re right of course, I ought to
have put the Lock Controls check-
box into the Form Designer page of
the LibIntf expert. Sorry, you
don’t get your money back, but
you’re welcome to massage my
code as much as you like!

Figure 3 shows the Form Designer
information returned by the Del-
phiIDE object. There are only five
items here, each corresponding to
a field within a record of type

TDesignerOptions. The contents of
this record are returned by the
GetDesignerOptions method. When
using this method, be sure that
you have checked the Aligned
Record Fields option in your com-
piler settings. Calling the method
will deliver 16 bytes of informa-
tion, whether you’re expecting it
or not.

Incidentally, it turns out that
there are some ‘almost-right’ ver-
sions of the LibIntf interface

➤ Listing 2

unit LibTestForm;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, LibIntf, StdCtrls, ExtCtrls, Tabs, Menus;

type
TLibExTest = class(TForm)
TabSet1: TTabSet;
Notebook1: TNotebook;
GroupBox1: TGroupBox;
Label1: TLabel;
BaseReg: TEdit;
GroupBox2: TGroupBox;
Label6: TLabel;
Label3: TLabel;
DisplayGrid: TCheckBox;
SnapToGrid: TCheckBox;
ShowComponentCaptions: TCheckBox;
GridSizeX: TEdit;
GridSizeY: TEdit;
GroupBox5: TGroupBox;
ComboBox1: TComboBox;
Image2: TImage;
cbLockState: TCheckBox;
Label5: TLabel;
PathAndBaseName: TLabel;
Label7: TLabel;
AppHandle: TLabel;
Label8: TLabel;
IDETime: TLabel;
Label9: TLabel;
WinSize: TLabel;
Label4: TLabel;
Image1: TImage;
GroupBox4: TGroupBox;
Label2: TLabel;
HelpClassName: TEdit;
ClassHelpOK: TButton;
GroupBox3: TGroupBox;
ComboBox2: TComboBox;
Label10: TLabel;
Button1: TButton;
procedure FormCreate(Sender: TObject);
procedure HelpClassNameChange(Sender: TObject);
procedure ClassHelpOKClick(Sender: TObject);
procedure FormPaint(Sender: TObject);
procedure TabSet1Change(Sender: TObject;
NewTab: Integer; var AllowChange: Boolean);

procedure ComboBox1Change(Sender: TObject);
procedure Button1Click(Sender: TObject);

private
public
end;

implementation
{$R *.DFM}
procedure TLibExTest.FormCreate(Sender: TObject);
var r: TRect;

Opts: TDesignerOptions;
begin
TabSet1.Tabs := NoteBook1.Pages;
with DelphiIDE do begin
BaseReg.Text := GetBaseRegKey;
GetDesignerOptions (Opts);
DisplayGrid.Checked := Opts.DisplayGrid;
SnapToGrid.Checked := Opts.SnapToGrid;
ShowComponentCaptions.Checked :=
Opts.ShowComponentCaptions;

GridSizeX.Text := IntToStr (Opts.GridSizeX);
GridSizeY.Text := IntToStr (Opts.GridSizeY);
cbLockState.Checked := LockState;
PathAndBaseName.Caption := GetPathAndBaseExeName;
AppHandle.Caption := ‘$’ + IntToHex (GetAppHandle, 8);
IDETime.Caption := ‘$’ + IntToHex (GetCurTime, 8);
r := GetMainWindowSize;
WinSize.Caption := Format(‘(%d,%d)-(%d,%d)’,
[r.Left, r.Top, r.Right, r.Bottom]);

ComboBox1.ItemIndex := 0;
ComboBox2.ItemIndex := 0;
ComboBox1Change (Self);

end;
end;
procedure TLibExTest.HelpClassNameChange(Sender: TObject);
begin
ClassHelpOK.Enabled := HelpClassName.Text <> ‘’;

end;
procedure TLibExTest.ClassHelpOKClick(Sender: TObject);
begin
DelphiIDE.ShowClassHelp (HelpClassName.Text);

end;
procedure TLibExTest.FormPaint(Sender: TObject);
var Item: TIPaletteItem;

begin
with DelphiIDE do
if GetToolSelected then begin
Label4.Visible := True;
Image1.Visible := True;
Item := GetCurCompClass;
try
Item.Paint (Image1.Canvas, 0, 0);

finally
Item.Free;

end;
end else begin
Label4.Visible := False;
Image1.Visible := False;

end;
end;
procedure TLibExTest.TabSet1Change (Sender: TObject;
NewTab: Integer; var AllowChange: Boolean);

begin
NoteBook1.PageIndex := NewTab;

end;
procedure TLibExTest.ComboBox1Change(Sender: TObject);
var Item: TIPaletteItem;

Cls: TComponentClass;
begin
with DelphiIDE do begin
case ComboBox1.ItemIndex of
0: Cls := TMainMenu;
1: Cls := TPopupMenu;
2: Cls := TLabel;
3: Cls := TEdit;
4: Cls := TMemo;
5: Cls := TButton;
6: Cls := TCheckBox;
7: Cls := TRadioButton;
8: Cls := TListBox;
9: Cls := TComboBox;
10: Cls := TScrollBar;
11: Cls := TGroupBox;
12: Cls := TRadioGroup;
13: Cls := TPanel;
else
Cls := Nil;

end;
if Cls = Nil then
Image2.Visible := False

else begin
Item := GetPaletteItem (Cls);
try
Item.Paint (Image2.Canvas, 0, 0);

finally
Item.Free;

end;
Image2.Visible := True;
Image2.Invalidate;

end;
end;

end;
procedure TLibExTest.Button1Click (Sender: TObject);
begin
{ This will do nothing if there’s no active form }
DelphiIDE.ExecDesignDialog(TDesignDialog(
ComboBox2.ItemIndex));

end;
end.

14 The Delphi Magazine Issue 29

circulating on the Internet (see my
comments about LibIntf at the end
of this article). The GetDesignerOp-
tions record is one area where
there’s an error. You must be sure
to name the final field as ShowCompo-
nentCaptions and not as ShowCompo-
nentCaption as I’ve seen it
elsewhere. If you get this wrong,
the compiler will understandably
complain that it can’t find the field
in question.

Palette Information
The next page, Palette Info, is
rather more interesting and is
shown in Figure 4. On the left hand
side, you can see a combo box
which I’ve ‘hard-wired’ with the
names of the fourteen component
classes which reside on the Stan-
dard page of the component pal-
ette. Each time you select a
different component class, the
small glyph to the right of the
combo box will be updated with
the corresponding component
bitmap. This is achieved through
the use of the GetPaletteItem
method. Basically, you pass this
method the name of an installed
component palette class and the
method will give you back an
object of type TIPaletteItem.

Armed with a TIPaletteItem, we
can call the Draw method for that
item and the corresponding com-
ponent bitmap will appear at the
specified position. Note carefully
that the TIPaletteItem is a brand
new object, created for you, and
must be destroyed when you’ve
finished using it. Seasoned expert
writers will be familiar with this
approach when using other
aspects of the Open Tools API. This
is all very well, you’re saying, but
isn’t it a bit klunky having to hard-
wire the list of component classes
that we’re interested in? That,
gentle reader, is the subject of next
month’s column when I’ll explore
the undocumented TILibrary class
and demonstrate how you can pro-
grammatically interrogate the
component library to discover
what goodies it contains...

Beneath the combo box, you’ll
see a label marked Currently
Selected Palette Icon together
with another component glyph. If

➤ Figure 4: The DelphiIDE interface will let you access palette item
bitmaps and invoke help information for a specified class. The
problem, of course, is that at run-time you don’t necessarily know
what’s in the library. Next month, I’ll fix that by showing how to
navigate all installed library components.

➤ Figure 3: The Form Designer options are neatly packaged up into a
single record that’s returned via one method call. As ever, bear in
mind that this page is informational only: changing the default
values won’t actually alter the corresponding IDE state.

you run the LibIntf expert for
yourself, the chances are that you
won’t see these two items. That’s
because you most likely won’t
have a component selected on the
component palette and my expert
code hides the label and picture
component in these circum-
stances. To select a component,
just click once on the required pal-
ette item before running the
expert.

An expert can determine
whether or not a component is
selected by calling the GetToolSe-
lectedmethod. If it is, then Truewill
be returned. If a component is
selected, then calling GetCur-
CompClass will return another
object of type TIPaletteItem as pre-

viously discussed. If you don’t
want to bother checking Get-
ToolSelected, then you can just go
ahead and call GetCurCompClass: it
will simply return Nil if there’s no
selected palette component. As
before, be sure to delete the
farmed-out object when you’ve fin-
ished with it.

To the right hand side of all this
information, you can see a group
box entitled Palette Class Help.
This makes use of the Show-
ClassHelp method, another rather
nice facility that enables you to
programmatically invoke Win-
dows Help for a designated Delphi
class name. This doesn’t just apply
to components, but it also works
with TForm, TApplication and so on.

16 The Delphi Magazine Issue 29

In fact, if you’ve got one or more
third-party component libraries
and those libraries have installed
Delphi help information in the cor-
rect manner, then you can even
specify third party class names.
For instance, I’ve got the popular
Raize class library and Show-
ClassHelp will happily accept
RzDriveComboBox, RzLabel and so on.
If you’re writing a Delphi compo-
nent library and you want to
supply it in conjunction with a set
of design-time property editors,
this is a simply way of providing
quick access to help on your
library components.

Standard Dialogs
No, we’re not talking about the so-
called Windows standard dialogs.
As you’ll no doubt appreciate,
Delphi has a set of standard,
design-time dialogs such as Align,
Size and Tab Order. Figure 5 shows
my expert’s simple interface to the
ExecDesignDialog method. You call
this method using one of the values
from the TDesignDialog type and

the corresponding design dialog
will immediately appear on screen.
Once again, this is a useful facility
for building into an expert. In fact,
as you get more into the inner
workings of the IDE, you’ll realise
that it’s possible not only to invoke
design dialogs from inside an
expert, but it’s even possible to
drive those same dialogs on ‘auto-
-pilot’ using a little extra wizardry.
Space doesn’t allow me to go into
such techniques in detail, but I’ll
give you a little clue by including a
public-domain package called
MIDETree on this month’s disk. This
package, written by Martin
Waldenburg, will enable you to
browse through the hierarchy of
run-time objects which hang off the
IDE’s Application object. I think
you’ll find it quite fascinating. You
can see it running in Figure 6.

Until Next Time...
I’ve devoted this month’s column
to a discussion of the mysterious
LibIntf unit and some of the more
useful methods associated with

the DelphiIDE object. In next
month’s column, I’ll continue the
story by showing you another
important LibIntf class, TILibrary.
Using next month’s code, you’ll be
able to do all sorts of unspeakable
things with the component
library...

In case you can’t wait until then,
I’ve included another small file,
LIBINTF.ZIP, on this month’s disk.
The interface file it contains will
give you the ‘full monty’ as far as
LibIntf is concerned, but this par-
ticular file was taken straight off
the Web and I can’t vouch for its
accuracy. I’ve already mentioned
one problem with the ShowCompo-
nentCaption/s field, and there may
be other inaccuracies too.

Dave Jewell is a freelance consult-
ant/programmer and technical
journalist specialising in system-
level Windows and DOS work. He
is the Technical Editor of Develop-
ers Review. You can contact Dave
as Dave@HexManiac.com.

➤ Above, Figure 5: Simple demo of ExecDesignDialog.

➤ Right, Figure 6: Tickets, please, for the IDE Guided
Tour. Using the freeware MIDETree package included
on this month’s disk you can browse the run-time
objects hanging off the IDE’s Application object.

	The History Of LibIntf
	The Source, The Whole Source And Nothing But...
	Miscellaneous Information Routines
	Form Designer Information
	Palette Information
	Standard Dialogs
	Until Next Time...

